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Abstract Hierarchical data structures such as irregular pyramids are used by
many applications related to image processing and segmentation. The con-
struction scheme of such pyramids is bottom-up. Such a scheme forbids the
definition of a level according to more global information defined at upper lev-
els in the hierarchy. Moreover, the base of the pyramid has to encode any single
pixel of the initial image in order to allow the definition of regions of any shape
at higher levels. This last constraint raises major issues of memory usage and
processing costs when irregular pyramids are applied to large images. The ob-
jective of this paper is to define a top-down construction scheme for irregular
pyramids. Each level of such a pyramid is encoded by a combinatorial map
associated to an explicit encoding of the geometry and the inclusion relation-
ships of the corresponding partition. The resulting structure is a stack of finer
and finer partitions obtained by successive splitting operations and is called a
top-down pyramid.

Key words: Segmentation; Irregular pyramid; Topological model;Combinatorial
map;

1 Introduction

Quadtrees [DRH&0, JR94] and regular pyramids [JR94] belong to the first hierarchi-
cal data structures introduced within the computer vision framework. Both models
are based on psycho-visual properties: focus of attention, for data structure based
on recursive split such as quadtrees, and successive processings by neural layers, for
bottom-up regular pyramids. Segmentation using quadtree data structures is based
on a recursive subdivision of a basic shape (e.g. a square).

On the other hand, regular or matrix pyramids are defined as a stack of images
with decreasing resolutions. An entity (square or pixel) defined at a given level of
a pyramid is associated to a connected set of entities below, called a reduction win-
dow [BCR90]. Both encoding schemes induce several drawbacks on the segmentation
process [BCRI0].



A top down construction scheme for irregular pyramids

The irregular pyramid framework introduced by Meer and Montanvert [Mee89,
MMRI1] partially solves these drawbacks: the stack of partitions is encoded as a
stack of successively reduced graphs. Irregular pyramids [Mee89, MMRII1, JM92,
BKO03] may only be built using a bottom-up construction scheme.

However, a bottom-up scheme requires an explicit encoding of the base level
image in order to define regions with any shapes at higher levels. Moreover, in a
bottom-up pyramid, each newly created region has no prior information about its
parents (defined at a later stage). This last constraint prevents the management of
the regions from depending on the properties of their parents in the pyramid.

The objective of this paper is the definition of a top-down hierarchical data
structure by extending the model of two-dimensional topological maps. For many
applications related to image segmentation, it is critical to minimize memory re-
quirements, mainly for those processing large images. A top-down approach rules
out the constraint of the explicit storage for the base: only split regions are kept in
memory. Besides, it offers a perceptual advantage as major features of an image are
discerned first in the pyramid, contrary to bottom-up models.

We first recall in Section 2, the basics of the different models used to define our
top-down irregular pyramid framework. Then, Section 3 defines our model of top-
down pyramid. We present in Section 4 its construction scheme. Section 5 details
the basic operations used to build a new level of the pyramid. We finally provide, in
Section 6, several experiments which allow to evaluate the computational times and
memory requirements of our model.

2 Recalls

2.1 Combinatorial maps

A combinatorial map encodes all the subdivisions and incidence relationships of a
topological space [Lie89]. In two dimensions, it is composed of vertices, edges and
faces, respectively defined as cells of 0, 1 and 2 dimensions and noted i-cells. The
border of an i-cell is a set of (j < i)-cells. Two i-cells are said incident if one belongs
to the border of the second while they are said adjacent if they are both incident to
the same (j < ¢)-cell. The degree of an i-cell is the number of adjacent (i + 1)-cells
and a dangling edge is an edge incident to a degree 1 vertex. Adjacency relations are
represented by operators noted [3; and applied to darts, as we will call the abstract
basic elements resulting from a complete decomposition of the image (Figure 1).

Definition 1 (2-dimensional combinatorial map). A two-dimensional combinatorial
map M (or 2-map) is a triplet M = (D, 1, B2) where:

1. D is a finite set of darts;

2. 1 is a permutation' on D;

LA permutation is a one to one mapping from S onto S.
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Figure 1: Construction of a 2-map by successive decompositions. (a) Original im-
age; (b) Disconnected faces; (c¢) Disconnected edges; (d) 2-map: darts are the basic
elements represented by arrows, (5 relations are represented with arcs and fy with
bold segments.

3. By is an involution® on D.

Intuitively, a combinatorial map may be understood as a planar graph where
relations on edges are explicitly defined by (; operators. Darts allow to differentiate
the two extremities of an edge and thus, are assimilated to half-edges. Each dart
belongs to a single vertex, edge and face of the map. The 5 permutation links each
dart of a face to the next dart encountered while turning clockwise around the face
(Figure 1). The (5 involution links each dart of an edge to the other dart of the edge
which has an opposite orientation (shared edge between the square and the triangle
in Figure 1). Two darts linked by 3; are said i-sewn and two 2-sewn darts belong to
two adjacent faces.

2.2 Topological maps

Because 2-maps can only represent the topology of connected objects, we introduce
the notion of topological maps [BMDO03, DBF04], an extension of combinatorial
maps that uses three different models to encode: topological relations, geometrical
information and inclusion relationships between regions.

Topology is based on a 2-map which is minimal according to its number of cells
(Figure 3(a)). Although combinatorial maps only represent the topology of the
space, geometric elements can be added easily. This association is called embedding.
The geometry relies on the interpizel framework where an image is considered as
a subdivision of a two-dimensional space in a set of 2-cells, 1-cells and 0-cells, re-
spectively called pizels, linels, and pointels (Figure 2). Each border between two
regions is thus defined as a set of linels. Since each dart corresponds to an oriented
boundary, the embedding of a dart defines an order over the set of linels belonging
to this border. The set of linels composing a dart can be represented explicitly as
a sequence of linels or implicitly, using a two-dimensional matrix of the size of the
image [BMDO03, DBF04] (Figure 3(b)).

A region is a set of darts delimited by a f1-loop. Each one has a representative
dart which allows to retrieve a dart of a given region (e.g. used as a starting point to

2An involution f is a one to one mapping from S onto S such that f = f*.
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Figure 2: Representation of the interpixel framework: an image is composed of
pixels, linels and pointels.
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Figure 3: The three different models composing a topological map. (a) A 2-map rep-
resenting the topology with darts and 3; relationships; (b) A geometrical matrix that
points out active linels and pointels; corresponding elements are linked together (for
visibility reasons, dotted lines represent only up/down relations between regions);
(c) A tree of regions for inclusion relations.

find the external border of the region). A set of adjacent regions is called a connected
component and the union of all the regions create a topologically closed space since
we represent the infinite region ® which encodes the background of the image. A
region included into another one is called a hole and defines an internal border for the
including region. An inclusion tree of regions represents the inclusion relationships
of the structure: the father of any region within the tree is defined as the one which
includes it in the image (Figure 3(c)).

A topological map is a suitable model for image processing which has been proven
complete (represents both topology and geometry), minimal (retiring any element
would change the topology) and unique (two topologically equivalent partitions have
the same map) [DBF04]. In practice, the minimality is required to decrease the
number of cells and minimize memory usage and the completeness insures that we
can encode partitions with regions of any geometry.

2.3 Pyramids

Simple graph pyramids, first introduced by Meer and Montanvert [Mee89, MMRI1],
then developed by Jolion [JM92] are defined as a stack of simple graphs successively

3For visibility reasons, the infinite region may not be represented in some figures.
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reduced. Within the segmentation framework, each graph of such a pyramid encodes
a partition. Due to the limitation of the simple graph data structure, many issues
are encountered when we have to update these graphs after splitting operations.

Combinatorial pyramids [BIK03] are built from an initial combinatorial map suc-
cessively reduced by a sequence of contractions and removal operations. These op-
erations are ruled by a contraction kernel (forest of the initial combinatorial map)
and a removal kernel (forest of the dual combinatorial map). These structures are
bottom-up and the initial combinatorial map (the base) is the most detailed level:
the embedding of each dart of the base corresponds to a linel. Therefore, the recep-
tive field of any dart may be retrieved from its receptive field and the embedding of
the darts defined at the base [BK03]. Besides, using forests avoids disjunctions of
connected components when performing merging operations: two connected compo-
nents are linked by a bridge if one is included into the other [BK06]. The model of
bottom-up combinatorial pyramid has been generalized to encode all n-dimensional,
orientable or not and with or without boundary subdivisions [Lie89, SDLOG].

Contrary to bottom-up methods, based on an explicit encoding of the base of the
pyramid, a top-down approach allows to encode only the upper levels, resulting in a
major memory reduction. Moreover, the focus of attention, encoded by the top-down
scheme, can adapt the segmentation of each region according to the features of its
parents (e.g. with medical images, the segmentation of cells in a tissue depends on
the tissue itself).

Within a top-down scheme, we have to give up on bridges to represent inclusion
relationships. Indeed, the management of the additional connections encoded by
the bridges during splitting operations may induce cumbersome computations. For
example, the insertion of an edge at the two endpoints of a bridge may create an
artificial face which has to be detected and removed. This is why bridges are replaced
by the use of inclusion tree of regions.

Moreover, since the top-down construction scheme avoids an explicit encoding
of the base, the geometry of the pyramid’s partitions cannot be implicitely encoded
at the base level. The borders of the partition have thus to be explicitely encoded.
These last arguments justify the use of topological maps as the basis of our top-down
model.

3 Model for top-down pyramids

Each level of our top-down pyramid model is encoded by a topological map, defined
by: a 2-map for the topology, an encoding for the geometrical embedding of darts
and a tree of regions for inclusion relationships.

Definition 2 (Top-down topological pyramid). Let (n,m,k) € N3. A top-down
pyramid P is defined by P = {G*} where, Yk, 0 < k < m:

1. GF = (DF, ﬁf’, [55) s a topological map;
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Figure 4: A top-down topological pyramid P, composed of two levels G and G!.
Numbers designate darts, 51 relations are represented by arcs and 2 by segments.
G is deduced from G° by splitting region 7 into two regions o and 73.

2. G**1 is deduced from G* by performing splitting operations.

Since any level of the top-down pyramid results from splitting operations (2),
every region of G¥ has a descendant in G¥*1 and every region of G* has at most one
antecedent in G¥~! (same for darts). Thus, the model is a causal structure [G:CMO6]
and defines a hierarchy of regions.

As a hierarchical data structure, the model has to represent objects and relations
through the levels of the pyramid. So, each dart and region of a map G¥ is connected
to its parent in G¥~! and its child in G**! (also called ascendant/descendant or
up/down). Note that, although each element (dart or region) has a single descendant,
there is no loss of information: we can retrieve for each element the corresponding
set of elements in a lower level. Indeed, the set of children of a given element is
connected so, up and down relations allow to start from a descendant and to find
all the neighbors which have the same “up”. Neither elements from the top level
nor elements newly created on a level have an antecedent and elements belonging to

the base do not have a descendant but several elements may have the same parent
(Table 1).

Table 1: Parent/child relations in pyramid P from Figure 4. (a) Between darts;
(b) Between regions.

D dup ddoum

1 - 4

2 - 5 R Tup  Tdown
3 1 - 1 i 9

4 1 -

5 2 21 i
. ] 3 1 -
7 i

8 2 -

(a) (b)

In the following, P denotes a top-down pyramid composed of m + 1 levels num-
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bered from 0 to m (m is called the depth of the pyramid). Globally, an exponent
k refers to level k + 1 of the pyramid: G* is the map of level k + 1, D¥ (resp. RF)
is the set of all darts (resp. regions) composing level k£ 4+ 1. An edge may be noted
(d,d’) where d and d’ are the 2-sewn darts which compose it and 7¥(d) denotes the
region of dart d in level k.

4 Construction scheme

This section outlines the global operations constructing a pyramid. The construction
is incremental: it starts from the top and adds new levels one by one at the bottom.
It is composed of three main steps: the construction of the first (top) level, the
creation of a new level by copying the bottom and the segmentation of the level that
has just been added.

Several methods can be considered to build the first level of a pyramid but only
two are considered so far. The first method creates a map composed of a single
region enclosing the image and the infinite region for the outside of the image. The
second method extracts a first topological map from a segmentation of the image in
few regions.

We create a new level by duplicating the last one of the pyramid. This is why,
we build a map equivalent to the bottom (same topology, same geometry and same
tree of regions), link corresponding elements between the two levels, and finally, add
this map at the bottom of the pyramid (Algorithm 1 and Figure 5(b)).

Algorithm 1: Duplication of a level
Data: A pyramid P of depth m + 1.
Result: A pyramid P of depth m + 2.
create a new void map G 11,
copy the geometry of G™ into G™*1;
foreach dart d,, € G™ do
create a new dart dgyy, in G™H!
set dy;, as parent of dgown;
sew (in G™"1) dgoyn with the corresponding down darts of 31(dy,) and
L 52(dup);
foreach region r,, € G™ do
create a new region Tgouy in G
set 7yp as parent of rggun;
establish inclusions in G™*! by setting the relations of 7gyyn like those of

L Tups
set G™ as parent of G™*1;

The last step of the construction process is the segmentation of the level that has
just been duplicated. This segmentation is based on splitting and merging operations
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that transform the level (Algorithm 2).

Algorithm 2: Segmentation of a level

N =

3
4
5

Data: A level G* of a pyramid P.
Result: P with a new segmentation on level G*.
foreach region r € G* do
if splitting criterion(r) is true then

L L split(r);
merge(G*, merging criterion);
simplify G*;
compute the new tree of regions;

Algorithm 2 is composed of five main steps:

e line 1: The splitting criterion indicates if a region has to be segmented. It is

used upstream from the construction process as an optimization since it moves
uninteresting areas further apart (notion of focus of attention [JR94]);

e line 2: This step decomposes region r into a set of square-unit regions, each one

enclosing a single pixel (Figure 5(c)). This operation is detailed in Section 5.1;

e line3: The merging criterion determines if two adjacent regions should be

merged. In order to preserve the causality property, we restrict the merging
operation to new regions resulting from the split of a same region (Figure 5(d)).
Therefore, two different regions of a level GP will never be merged in a level G9,
p < q. This operation is detailed in Section 5.2;

e line4: The simplification step removes all remaining 2-degree vertices;

e line5: Because new regions are created, the tree for inclusion relations has to

be rebuilt. Indeed, it would be too expensive to keep it up-to-date as many
regions are created from a level to another.

Steps line4 and line5 rely on the algorithms defined for topological maps

[DBF04]. Figure 5 illustrates a simple example of the building process.

5

Basic operations

5.1 Splitting operation

As mentioned in Section 4, our splitting step decomposes a region into a set of basic
regions, each one enclosing a single pixel. Later, a merging step will merge these
regions: since any couple of adjacent regions may be merged, any subdivision of the
initial region can be encoded. The operation insures that each created region is both
topologically and geometrically correct (Figure 6).

Assuming that the region to split is denoted r, Algorithm 3 describes the splitting

operation which may be divided into the following steps:
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Figure 5: Main steps of the construction process of a top-down pyramid. (a) Initial
step: the pyramid is composed of a single level GY; (b) Duplicate and link: G is
a copy of G° and corresponding elements are linked together (for visibility reasons,
dotted lines represent only up/down relations between regions); (c) Split: r9 is split
into a set of square-unit regions enclosing a single pixel; (d) Merge and simplify:
some of the created regions are merged and draw r} and r3.
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Figure 6: Decomposition in four steps of the splitting process applied on a region ry
enclosing four pixels. (a) Initial region; (b) Splitting edges: darts 1 to 8 are stored
into list (external border of 71); (c¢) Insertion of 4 dangling edges while testing darts
1, 3, 5 and 7; (d) Sewing correctly dangling edges while testing darts 9 and 13.

Algorithm 3: Splitting region

Data: A region r.
Result: Region r is split into a set of basic regions enclosing a single pixel.
split edges of r into unit edges;
create list containing every dart of r;
while 3 d € list|d is unmarked do
[ + getLinel(d);
4 if I+ is not activated then
5 insert edge(d;, d;) on d;
L add(d;, d;) at the end of list;
else if (3(d) = p1(d) then
6 L 1-sew correctly d and fa2(d) around the pointel p incident to Sa(d);

| mark(d);

N =
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Figure 7: Insertion of a dangling edge on dart 1. (a) Insertion of edge (5,6) on a
degree 2 vertex; (b) Insertion of edge (3,4) on a degree 1 vertex.

e line 1: All the edges belonging to the borders of r are split into one-linel long
edges to allow further edge insertions;

e line2: We create a list which initially contains all the darts resulting from the
previous decomposition of external and internal borders of the region;

e line 3: We retrieve the geometry associated to the dart. As all edges have been
split, the embedding of each dart of list is a single linel;

e line4: The external border of a region is clockwise oriented. Let us denote by
lg and lj, the oriented linels encoding respectively the embedding of the dart d
and the next linel encountered after [; when turning counter-clockwise around
the pointel associated to d (e.g. in Figure 6, ZQL =l1). Since the 8; permutation
connects two consecutive darts in a clockwise orientation around a face, only
lj needs to be considered at this stage. If other darts remain around the vertex
incident to f2(d), they will be considered during further iterations.

e line5: Actually, an edge insertion on a dart d consists in adding two one-linel
long darts d; and d; (whose embedding is perpendicular to /) on the pointel p
incident to d. Two configurations may happen as described in Figure 7;

e line6: In order to sew the 2 darts of the dangling edge e = (d, 52(d)), we
geometrically look for edges perpendicular to e as illustrated in Figure 8. This
operation 1-sew the two darts according to its number (one or two) of per-
pendicular edges. At least one perpendicular edge exists (inserted during the
previous iteration when processing 2(d)). If four edges are incident to p, pro-
cessing e will sew two edges around p and the two others will be sewn in a
further iteration (Figure 6).

This process ensures that each linel within the initial region is added. Moreover,
no dangling edges remain: the initial region is initially minimal (i.e. without dangling
edges) and if one is inserted, it is added to the list and then processed and correctly
sewn. Consequently, the splitting operation produces a set of square-unit regions
corresponding to the initial region.

10
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Figure 8: 1-sewing operations when processing dangling edge (1,2). (a) One per-
pendicular edge: 1-sew (1,4) and (3,2); (b) Two perpendicular edges: 1-sew (1,4)
and (5,2).
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Figure 9: Configurations encountered during the merging operation between two ad-
jacent regions. (a) Simple adjacency between (r1,73) and (r2,74): the corresponding
edges (1,2) and (3,4) are removed if the merging criterion is verified; (b) Multi-
adjacency between (ri,79): if (1,2) has been removed, (3,4) is removed indepen-
dently of the merging criterion.

5.2 Merging operation

Once the splitting process is done, we need to traverse all the created square-unit
regions to segment the level according to our merging criterion. Actually, the merging
operation is a global process which operates on a list of darts corresponding to the
edges that were inserted by the splitting operation. This solution was selected for
optimization matter as it avoids a complete traversal of all the regions. Each edge
contained in this list is incident to a couple of adjacent regions (r,7’).

Two configurations may be encountered: simple or multi adjacency. In the first
case, the edge is removed if the merging criterion is satisfied for (r,7") (Figure 9(a)).
In case of multi-adjacency, » and 7’ share several edges. If the merging criterion
determines that (r,r") must be merged, all the shared edges have to be removed
(Figure 9(b)). Algorithm 4 details the whole process:

e line 1: This list allows to traverse the regions created by the splitting operation
instead of traversing the whole map. Note that we only need to store one dart
d per edge (the second one is f2(d));

e line 2: The first condition aims to detect cases of multi-adjacency. The merging

11
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Algorithm 4: Merging operation

1 Data: A list of darts corresponding to all the edges inserted on G* during
splitting operation.

Result: G* segmented according to merging criterion.

foreach dart d € list do

if r(d) = r(B2(d)) or merging criterion(r(d), r(52(d)))is true then

turn off getLinel(d) (geometry);
relabel the darts of r(52(d));
remove d and [B2(d) (topology);

[SLS" NI )

criterion is a test between two adjacent regions along the current edge (i.e.
(d, B2(d)));
e line 3: Let the geometry know that the linel is not active any more;

e line4: This step updates the darts previously composing r(/52(d)) as now
belonging to r(d);
e line5: Removal of the two darts, according to the method in [DLO3].

The only constraint applied to the splitting and merging operations is to pre-
serve the causality of the structure: merging is thus restricted to the basic regions
generated by the split of a same region. Therefore, within these regions, our merging
operation is unrestricted and may group into a single region, any connected set of
pixels. Any partition of the initial region may thus be encoded by our split and
merge process. Contrary to quadtrees, our splitting operation is independent of any
geometrical constraint.

6 Results and analysis

This top-down model has been implemented in C++ and results have been computed
on a personal computer with a CPU AMDX2 3800+ (2GHz) and 1GB of RAM on
a Linux system.

The splitting and merging criteria used to obtain the different segmentations in
Figure 10 are defined as follow: let (r,7') a couple of adjacent regions, M, m and
A denoting the maximum, minimum and average gray level of . The symbol tr
denotes the threshold used by the merging criterion.

In columns (a) and (d) of Figure 10, the merging criterion is a comparison between
the average gray levels of two adjacent regions: (r,7’) is merged if |[A — A'| < tr.
In columns (b) and (c), ¢r is proportional to the standard deviation of the parent
region of (r,7'): the more homogeneous a parent region is, the more our segmentation
algorithm will search for fine details within its sons.

The splitting criterion avoids regions with less than < 10 pixels and those which
are going to be “completely” merged: r is split if M —m > tr. In columnms (a) and

12
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Figure 10: Visualization of the top-down construction process: first row is the orig-

inal image followed by levels G
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(d), the values of tr are respectively set to 80/40/20 and 100/40/10 for the levels
G'/G?/G? of the images Lena and Boat. Our splitting and merging operations
are independent of any specific criteria: more elaborated ones, using geometrical,
colorimetric or topological features, may be designed without modifying our model.

Table 2: Statistics of the top-down construction from the image of Lena (512*512)
in Figure 10, column (b).

G'  G? G3

darts 600 7728 19090
regions 134 1624 3953
total memory (KB) 306 808 1604
splitting (s) 223 142  1.29
merging (s) 0.37 027  0.27

total level

construction (s) 3.11 205 194

Table 2 gives the number of elements, the memory usage and processing times
for each topological map composing the pyramid of the image Lena. The number of
darts and regions strongly increases from a level to another as the merging threshold
differentiates more regions. It directly impacts the memory size of the associated
topological map. Indeed, the topology of a map requires most of the memory, except
for low segmented maps where geometry could require more. The construction time
of a level remains constant because, although more regions are split, they are smaller
in number of pixels.

7 Conclusion

This paper defines a model of top-down hierarchical data structure based on topo-
logical maps. Topological maps are based on three models: a combinatorial map
encoding multiple adjacency of regions, an explicit encoding of the geometry of the
regions border and an encoding of the inclusion relationships. Such a model pro-
vides a complete description of a partition and is adapted to splitting operations.
Our top-down pyramid is based on an initial topological map successively refined by
splitting operations.

This structure is particularly well suited for applications in segmentation that
process large images: a top-down construction scheme allows to store, at each step
of the algorithm, only the currently split regions and we avoid the storage of very
fine partitions (first levels of bottom-up irregular pyramids). Besides, can use global
properties of upper levels to refine the segmentation in lower levels and we retrieve the
dual relation between quadtrees and matrix pyramids with top-down and bottom-up
approaches.

14
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In our future work, we plan to study different encoding of the geometry and of
the inclusion relationships of topological maps. We also plan to use other splitting
methods such as [BMDO03] and to compare our results with results obtained from
other kinds of pyramids. Finally, we should define segmentation operations which
fully exploit the top-down structure of the pyramid.
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