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Abstract Processing large images is a common issue in the computer vision
framework with applications such as satellite or microscopic images. The ma-
jor problem comes from the size of those images that prevents them from being
loaded globally into memory. Moreover, such images contain different informa-
tion at different levels of resolution. For example, global features, such as the
delimitation of a tissue, appear at low resolution whereas finer details, such as
cells, can only be distinguished at full resolution. Thus, the objective of this
paper is the definition of a suitable hierarchical data structure that would pro-
vide full access to all the properties of the image by representing topological
information. The idea consists in transposing the notion of tile for top-down
topological pyramids to control accurately the amount of memory required by
the construction of our model. As a result, this paper defines the topologi-
cal model of tiled top-down pyramid and proposes a construction scheme that
would not depend on the system memory limitations.

Key words: Irregular pyramid; Topological model; Tiled data structure; Com-
binatorial map;

1 Introduction

The automatic or semi-automatic analysis of high resolution images such as whole
slide microscopic images has to face at least two important challenges. Firstly, the
size of these images is too important: most of the time, they cannot be stored globally
into memory. This drawback induces a decomposition of global images into smaller
ones called tiles. Secondly, because of the important amount of information present
at full resolution, global structures of images only appear at low resolutions. These
images naturally induce a mixed multi-resolution and hierarchical representation. An
automatic analysis scheme of such images should thus incorporate these constraints.

The segmentation phase is the first abstraction step of an image analysis or
interpretation algorithm. Usually, the data structures used for encoding partitions
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within a segmentation scheme do not provide a full access to all the properties
of a partition. These properties include topological information such as the set of
neighbors of a region, the set of regions inside a single region or the region containing
a given region. The geometrical information includes the geometrical boundary of a
region or the geometrical segment between two regions. Topological maps [BMDO03,
DBF04] have been designed to provide an efficient access to both geometrical and
topological information while allowing modifications of the partitions through split
and merge operations. However, these models only encode a single partition and
thus, do not provide a hierarchy of partitions.

Quadtrees and regular pyramids are the first hierarchical structures used for hier-
archical image segmentation. Both structures are based on psycho-visual properties.
Quadtrees use the top-down notion of focus of attention: segmentation is performed
by recursive splitting operations of a given geometrical shape. Regular pyramids
use the bottom-up concept of reduction window [BCR9I0]: each pixel of a level cor-
responds to a larger set of pixels in the level below. However, both structures have
several drawbacks [BCR90] concerning their ability to encode connected regions of
any size and shape and to provide an efficient access to the neighborhood of a re-
gion. The framework introduced by Meer and Montanvert [Mee89, MMRI1] allows
the definition of bottom-up [JM92, Kro95] irregular pyramids which encode hierar-
chies of partitions made of connected regions. This pyramidal model provides an
efficient access to the neighborhood of any region of the hierarchy. Finally, in order
to access both geometrical and topological information, [BK03, SDLO6] propose a
model of irregular pyramids composed of combinatorial maps.

However, a bottom-up analysis scheme induces at least two problems when pro-
cessing high resolution images. First, the encoding of the initial partition that cor-
responds to a very large image may require large amount of memory. This problem
is accentuated by the computation of the remaining levels of the pyramid. Second,
since these images encode different objects at different resolutions, a better anal-
ysis would consist in performing a top-down construction scheme of the pyramid
where each region (defined at a given level of resolution) may influence the way its
sons (defined at higher resolution) will be processed. Therefore, a top-down con-
struction scheme of irregular pyramids based on topological maps have been defined
in [GBD09]. Besides, even when using a top-down analysis scheme, the number of
regions defined at a given level of the pyramid is only bounded by the size of the
image encoding this level. Since this size may be large for high resolution images, we
still have to face the issue of the important amount of memory required by irregular
pyramids on high resolution images.

The objective of this paper is the definition of a tiled structure for top-down
irregular pyramids. We recall in Sect. 2 the topological models used by our model of
tiled top-down pyramid. Section 3 defines the notions of topological tile and tiled
pyramid. We detail in Sect. 4 the construction scheme of such a pyramid. Finally, we
present some experiments and comparisons in Sect. 5 that highlight involved memory
requirements and computational times.
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(a) (b) (c)

Figure 1: Combinatorial maps: construction by successive decompositions. (a) Orig-
inal image; (b) Decomposed faces; (¢) Decomposed edges; (d) 2-Map: arrows repre-
sent darts, 81 and [s operators are respectively represented by arcs and segments.

2 Recalls

2.1 Combinatorial Maps

In two dimensions, a combinatorial map (noted 2-map) is a set of vertices, edges
and faces that encodes the subdivision and incidence relationships of a topological
space [Lie89]. A complete decomposition of an image results in a set of abstract
basic elements that we call darts. We introduce two operators noted 3;, i € {1,2}
that apply on darts in order to represent adjacency relationships (Fig. 1).

Definition 1 (2-dimensional combinatorial map). A two-dimensional combinatorial
map M (or 2-map) is a triplet M = (D, 51, B2) where:

1. D is a finite set of darts;
2. By is a permutation' on D;

3. By is an involution® on D.

Intuitively, we can consider a map as a planar graph where (; operators explicitly
define the relationships between edges and where darts allow to differentiate the two
extremities of an edge (a dart may be assimilated to a half-edge). In practice, the 1
permutation allows to turn around a face: it links a dart of the face to the next one
encountered while turning in a clockwise orientation. The 9 involution separates
two adjacent regions: it links a dart to the other dart that belongs to the same edge
but has an opposite orientation.

2.2 Topological Maps

Topological maps extend the model of combinatorial maps in order to provide a
full representation for the partition of an image since a 2-map can only encode
the topology of a connected set of objects. The definition of a topological map
[BMDO03, DBF04] proposes to combine three distinct models: a 2-map that encodes
topological relationships, a matrix of interpizel elements ([Kov89, KKM90]) that

LA permutation is a one to one mapping from S onto S.
2An involution f is a one to one mapping from S onto S such that f = f*.



Ezxtraction of tiled top-down irregular pyramids from large images

T1

PSRN

Ty |l T3 T4

1

|
| |
O I IR i
I
l

I
3
L

(a) (b) () (d)

Figure 2: Combinatorial maps: construction by successive decompositions. (a) Orig-
inal image; (b) Combinatorial map for topology: the image contains four regions
ri,i € {1,2,3,4}; (c) Interpixel matrix for geometry: pointels and linels are repre-
sented by bold circles and segments and correspond to the embedding of the darts;
(d) Tree of regions for inclusion relationships: r; contains r9, 73 and r4. 79 and r3
are adjacent.

encodes the geometry of the partition elements, and a tree of regions for inclusion
relationships.

The combinatorial map encodes the topological relationships thanks to the 3;
operators and is minimal: the removal of any element would change the topology
(Fig.2(b)).

The geometrical matrix uses pointels, linels and pixels to represent the geometry
of a partition. Associating a geometrical information to a topological element is
called embedding: for example, the embedding of an edge is a sequence of linels
(Fig.2(c)). Pointels, linels and pixels are respectively referred to as i-cells (i €
{0,1,2}) and we call degree of an i-cell the number of (i + 1)-cells touching this cell.

The tree of regions describes inclusion relationships: a region will be the father
of the regions it contains (Fig. 2(d)). The root of the tree is called the infinite region.
It encodes the background of the image and allows to close the 2-map topologically.
The model links darts and regions: a dart knows the region it belongs to and a region
knows a representative dart (arbitrary chosen on the external border of the region).
Note that the infinite region may be omitted in some figures for visibility reasons.

2.3 Top-down Pyramids

In order to fit the hierarchical framework, the topological map model has been ex-
tended to top-down pyramids. Each level G¥ of a top-down pyramid is a topological
map where each dart and region is connected to its parent in G¥~! and its first child
in G**1, These links are called up/down relationships. The hierarchy is induced by
sets of connected elements having the same parent.

The construction scheme of such a pyramid extracts a first level from a segmen-
tation of the image in few regions (or even a single region). Then, it duplicates the
bottom level, links the darts and regions between the two levels and finally, performs
splitting operations based on segmentation criteria that transform the level (Fig. 3).
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(a)

Figure 3: Representation of a top-down pyramid composed of two levels G* and
G*+1. (a) Original image; (b) Pyramid: 3; and (9 operators are represented by arcs
and segments. Arrows between the levels show up/down relationships between darts
and regions. Level G* is composed of a single region r¥. The splitting operation on
G+ allows to differentiate the two regions 5™ and r]?f“.

The resolution of the image at level k+1 is always greater or equal to the one defined
at level k.

If we consider the construction scheme of a top-down pyramid, its main drawback
is that for each level, we have to load the whole image associated with this level and
represent the whole topological map which encodes the partition defined at this level.
Assuming that the image is small enough not to soak memory, the topological map
of a level quickly becomes too large as its number of darts and regions increases.

3 Definition of a Tiled Top-down Pyramid Model

In order to define the notion of topological tile, we establish an analogy between
the common notion of a tile in image processing: in both cases, a tile represents a
regular and arbitrary subdivision of a set and reconstructing the whole initial set
is obtained by the juxtaposition of all the tiles it has been split into. Therefore,
we define a topological tile as a local topological map composed of a combinatorial
map, a geometrical matrix associated with the subdivision and a tree of regions. The
topological tile also disposes of additional information specific to the concept of tile.

Since a tile corresponds to an arbitrary subdivision of the image, its border may
not mark any real frontier between image components and, in such a case, this border
should be considered as fictive. Geometrically, two adjacent tiles share a same edge
(Fig.4(c)). Topologically, we define the 3} operator on the darts that belongs to the
border of a tile so that all the darts of the border of the tile know both their 5 in
the tile (those of the infinite region) and their 35 in the adjacent tile (Fig.4(d)).
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Figure 4: Topological tile. (a) An image divided into 4 tiles; (b) Geometrical rep-
resentation; (c) Topological representation. 35 operator is represented by bold seg-
ments; (d) Detail of the connection between ¢(0,0) and #(0,1). Darts 2 and 3 belong
to the infinite region. (1) =2, B2(4) = 3, B5(1) = 4.

Now that the notion of topological tile has been introduced, we can define a
hierarchical model based on those tiles, called a tiled top-down topological pyramid.
Each level of the pyramid is a set of topological tiles that have the same depth. For
each tile, the pyramid assigns a level and a location within the image which is defined
at this level. The pyramid also makes the correspondence between the image and
the topological maps, handles the fictive borders of the tiles and may swap or load
the tiles between memory and disk.

Definition 2 (Tiled top-down topological pyramid). A tiled top-down pyramid P
composed of l + 1 levels is defined by:

P = {t(i, 7, k‘)}ke{07_“7l}7(1-7j)€{0’._.7wk}X{O,_”Hk} where t(i, 7, k) is a topological tile
and Vk, 0 < k <I:

(1) WiHy and (i,7) € {0,..., Wi} x{0,..., Hy} encode respectively the number of
tiles and the coordinates of one tile at level k.

(2) t(i,j,k) is a topological tile encoding a partition of the geometrical tile (i, j)
defined at level k;

(3) t(i,j,k+ 1),k < is deduced from t(i, j, k) by performing splitting operations.

Several strategies can be considered for the subdivision in tiles such as a constant
size of tiles (in pixels) or a constant number of tiles per level. We will arbitrary choose
this last representation since it allows to validate the concept of tiled pyramids and
suits the case when the image associated with each level has a constant resolution.
The choice of a constant number of tiles per level with a regular subdivision does not
impact the irregular pyramid framework of the model: within a tile, the construction
scheme remains irregular.

The pyramid defines a hierarchy by introducing up/down relationships between
the tiles, similar to the relationships defined on darts and regions by a top-down
pyramid. Except for the tiles of top and bottom levels of the pyramid that will not
have respectively any parent and any child, each tile knows its single parent (tile
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up) and its first child (tile down). Note that several tiles of the same level may
have the same parent: since all the children of a given tile are adjacent, we can
efficiently retrieve all the children of a tile starting from the tile down and finding
all its neighbors that share the same tile up.

The interesting point in dividing the levels of the pyramid in tiles is that most of
processings and algorithms require only a few tiles at the same time: we can store
apart unused tiles by swapping them on disk so that a maximum of memory space is
available for the tiles being processed. A simple solution to record a tile is to apply
a unique label for each dart and region that identify them in a file on disk.

We introduce the notion of local pyramid which is the set of tiles currently loaded
in memory. Since modifications such as splitting or merging operations only apply on
the local pyramid, its role is to keep the model coherent by spreading modifications
to the other tiles. For example, if we split the border of a tile in memory, the local
pyramid updates the adjacent tiles that are either on disk or in memory. Finally,
when we load or swap a tile, the local pyramid updates the borders of its neighbors
so that adjacent tiles are correctly connected.

4 Construction Scheme of a Tiled Pyramid

4.1 Connection of Adjacent Tiles

If we want a level of the pyramid to be topologically coherent, we have to connect
adjacent tiles in order to find darts and regions that belong to several tiles. We will
call basic dart a dart d whose edge embedding is a single linel. Algorithm 1 describes
the operation and can be divided into the three main steps illustrated by Fig. 5.

We will note s (resp. s’) the set of darts that are adjacent to ¢ (resp. t) and
that belong to the infinite region of ¢ (resp. t'). First, we split s and s’ such as
they are only composed of basic darts. This splitting operation ensures that s and
s’ share the same number of darts (Fig. 5(a)). Second, we link ¢ and ¢’ thanks to the
B4 operator by traversing simultaneously the darts of s and s’ (Fig.5(b)). Finally,
since the previous steps may have created degree 2 vertices, we have to perform a
simplification pass in order to maintain the minimal property of the model. The idea
is to process each vertex that belongs to the shared border (s,s’) of two adjacent
tiles t and ¢/, and remove it (according to the method in [DL.03]) if its embedding is
a pointel whose degree equals two in both ¢ and # (Fig. 5(c)) ®.

4.2 Extraction Process

The global construction scheme of a tiled top-down pyramid starts with the creation
of the first level G°. An arbitrary subdivision of the image defines the geometry of
the tiles. Each tile of G° is composed of a single region that represents its associated

3The vertex removal operation on a dart d ensures that B1(Bo(d)) <+ Bi(d) and

B1(Bo(B2(B1(d)))) < B2(d). Then, it deletes d and B1(B2(d)).
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Algorithm 1: Connecting two adjacent tiles

Data: Two adjacent tiles ¢t and t';
Result: ¢ and ¢’ connected.
Let s the set of darts adjacent to ¢’ and that belong to the infinite region of ¢;
Let s’ the set of darts adjacent to ¢ and that belong to the infinite region of t';
Split s and s’ into basic darts;
while 3 dart d € s|d is unmarked do
p < pointel(d);
Let d' the dart of s’ such as pointel(f2(d')) = p;
p’ + pointel(f2(d');
B5(B2(d)) « Ba(d');
if degree(p) = degree(p’) = 2 then
L Vertex__removal(d);

Vertex_removal(d');

else
| Mark(d);

subdivision. Then, the creation of a new level only requires a local pyramid composed
of four tiles. Indeed, we use an incremental algorithm scanning the subdivisions line
by line, starting from the top-left subdivision. A tile ¢(i,7,k + 1) is defined from
t(i,7,k) by performing splitting operations. So, we need in memory the tile up
t(i,j, k) and the left and top neighbors (¢(i — 1,j,k+ 1), t(i,j — 1,k + 1)) to connect
the left and top borders of ¢(i, j, k+1). The right and bottom borders of ¢(i, j, k + 1)
will be connected when processing respectively ¢(i + 1,7,k + 1) and t(i,5 + 1,k +1).
Note that if ¢(i — 1,7,k + 1) or ¢(i,j — 1,k + 1) are not defined, (i = 0 or 5 = 0),
the tile (7,4, k + 1) belongs to the border of the image and does not need to be
connected with neighbors. Finally, even in the case when those four tiles are still
too large for the memory limitations of the system, we can simply adjust the initial
subdivision by reducing the dimensions of the tiles to ensure the feasibility of the
process. Algorithm 2 describes the main steps of the extraction of a tiled level.

e line 1: Saving a tile records its map, geometry and tree of regions on disk. We
have to traverse all darts and regions and save all their connections, geometry
and up/down relationships.

e line2: The loading operation of a tile ¢ reads the corresponding file on disk
and constructs a new tile before adding it to the pyramid. We first create darts
and regions instances in the topological map before filling their properties from
reading the corresponding files. Indeed, the operation cannot be performed
in a single pass because darts and regions are linked together (a region has a
representative dart, a dart knows its region). A region must have been created
before it is assigned to a dart and vice versa.
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Figure 5: Connection of borders between two tiles. (a) Splitting of the border into
basic darts; (b) 5 connection: d and d’ are two basic darts that belong to r and
p = pointel(d) = pointel(f2(d')). Connecting t and ¢’ comes to link §5(d) with S2(d")
such as 35(f2(d)) = Ba2(d’); (c) Simplification step: degree(p1) equals 2 in ¢ but 3 in
t' whereas degree(p2) equals 2 in both ¢ and ¢': the vertex removal operation is only
performed on pointel ps.

e line3: Creating ¢t = t(i,5,k + 1) from ¢’ = (i, j, k) is similar to adding a
level in a top-down pyramid: we first create t as a copy of ¢/, then we set
up/down relationships between ¢ and ¢ and finally, we refine ¢ with a split and
merge technique [GBD09]. Note that since the segmentation aspect is not the
objective of this paper, we use a criterion based on a basic comparison of average
gray levels that was already defined for top-down pyramids. This results in a
segmentation which is local to each tile.

e line4: This step connects the left and top neighbors (¢t(i — 1, j, k), t(i,j — 1, k))
with (7, j, k) according to the method detailed in Sect. 4.1.

e line5: Since t(i, 7, k) has been created, we can record it on disk. It is neces-
sary to save the neighbors too because their borders have been updated in the
previous step.

e line6: An unloading operation removes the tile of the local pyramid. Step 5
ensures that the information relative to the tile has been correctly recorded.
The operation frees memory so that the size of the local pyramid does not grow
too much.

5 Experiments

We have implemented our model of tiled top-down pyramid in C++. Results have
been computed on a personal computer with a CPU AMDX2 3800+ (2GHz) and
2GB of RAM on a Linux system. In order to compare results, all the pyramids
have the same number of levels (G*, k € {0,1,2,3}) and each level has the same
number of tiles (each tile has exactly one parent and one child). All the pyramids
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Algorithm 2: Construction of a tiled level

Data: An image I.
Result: A tiled top-down pyramid P composed of m + 1 levels.
Build first level GO of P;
Associate I to P;
foreach tile t € G° do
1 L Save t;

for k=0tom—1do
foreach tile t(i, j, k) € G* do
Load t(i — 1,j,k+ 1) and ¢(i,7 — 1,k + 1);
Create t(i,j,k + 1) from (i, j, k);
Connect neighbors of (i, j, k + 1);
Save t(i,j,k+ 1), t(i — 1,5,k + 1), t(4,5 — 1,k + 1) and ¢(3, j, k);
Unload t(i — 1,5,k + 1), t(i,5 — 1,k + 1) and (i, j, k);

(=B NIV M

Table 1: Maximum theoretical memory of the topological model that represents a
tile given its size.
tile side (px) 64 128 256 512 1024 2048

memory (MB) 1.3 5.2 209 838 3355 1342.1

are composed of four levels which are created with the same splitting method defined
in [GBDO09]: a basic segmentation criterion merges adjacent regions if the difference
of their average grey values is below the thresholds defined as 25/15/5 for levels
G'/G?/G3. The subdivision of the levels in tiles is regular and tiles and images are
squared.

The maximum size of a tile is reached when each pixel corresponds to a different
region. In this case, the size of the topology can be estimated by: 4 X sizeof(dart) x
fpizels + sizeof(region) X fpizels. Table 1 presents the required memory for dif-
ferent sizes in our model (sizeof(dart) = 60bytes and sizeof(region) = 80 bytes).
In practice, the values obtained in our experiments are quite similar because the
splitting method bursts regions and produces one single region per pixel before the
merging step. Thus, in order to process large images, we choose a fine enough sub-
division with tiles smaller than 1024 x 1024. Note that the real amount of memory
which is necessary may be more important as we need to store the geometry and the
image. Since we can not load the full image in memory, we use the tiled subdivision
of the libtiff library in order to load only the subdivisions that are necessary to the
tiles being processed.

Table 2 gives the computational times and memory usages of top-down pyramids
that do not take advantage of tiled subdivision. Indeed, each level is composed
of a single tile of the size of the image. The results are computed for successive

10
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Table 2: Extraction of top-down pyramids without tiled subdivision for different
scalings of the image Lena. Each level is composed of a single tile.

image side extraction ram darts regions

(pixels) time (s)  (MB) Gl/G?*/G3 G'/G?/G3

512 3.7 92.2 70/2084/47268  19/460/10056

1024 14.8  366.6 74/1938/47242  19/428/10057

2048 58.2 1412.3 80/2010/47098  20/444/10027
4096 na

Table 3: Extraction of tiled top-down pyramids from large images based on different
scalings of the image Lena. The subdivision in tiles allows to overcome the memory
limitations of the system.

image tiles per extraction ram disc darts regions
side (px) level time (MB) (MB) G'/G?/G?3 Gl'/G?/G3
512 1 5s 92 7 1212/5458/54 222 216/989/10796
2048 16 53s 95 20 486/4332/51 460 77/832/10494
8192 256 14mn 95 272 3382/9968/66 764 663/1757/12498

32768 4096 6h 38mn 111 4315 35936/48280/128858  8537/10228/23 309

scalings of the image Lena. The second column gives computational times for the
whole extraction of the pyramid. The third column is the real memory usage of the
application. Fourth and fifth columns give the number of darts and regions for each
level. We quickly show the limitations of the top-down model as it cannot process
images larger than 2048 x 2 048.

Table 3 shows the advantage of using a tiled top-down model compared to the
plain top-down extraction. The fourth column represents the size of the whole pyra-
mid on disc (set of files that encode the tiles). We notice that the tiled approach
allows to process any large image because we only need to refine the subdivision of
the image (smaller tiles) to decrease the amount of required memory.

Table 4 shows the impact of the tiles size during the construction process of
a tiled top-down pyramid associated with the image Lena. It provides memory

Table 4: Comparison of computational times and memory usages according to the
size of the tiles for a tiled top-down pyramid associated to the image Lena (1024 x
1024).

tile side tiles per extraction ram disc
(pixels) level time (s) (MB) (MB)
1024 1 15.0 366.7 6.8
512 4 14.1 93.4 7.0

256 16 14.2 24.6 7.9

64 256 17.3 2.8 22.0

11
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Figure 6: Each row represents the levels G, G? and G? of a tiled top-down pyramid
associated with the image Lena. First row uses a subdivision of 64 tiles/level, second
row has a subdivision of 4 tiles/level.

usage and computational time for four different subdivisions. We can note two
interesting points in this experiment. First, the amount of memory required by the
local pyramid decreases with smaller tiles. Second, a too fine subdivision increases
the computational time of construction and the global amount of memory space.
This comes from the additional information required by each tile (labels, up/down
relationships, (5 operators), from the repeated calls of algorithms that connect the
tiles and from the increasing number of swapping on disk operations. Therefore, in
order to obtain the best extraction time for a given amount of available memory, the
size of the tiles should be enlarged as long as the size of the local pyramid does not
exceed this amount.

Figure 6 illustrates the tiled construction of a top-down pyramid with a basic
segmentation criterion. We can notice that the segmentation may vary although the
criterion is the same. Indeed, the split and merge operation that refines a tile is local
to this tile and thus, depends on the initial subdivision. Note that fictive borders are
represented to illustrate the delimitations of the tiled subdivision. The subdivision
has been arbitrary chosen regular (for simplicity and homogeneity between results)
but the model is an irregular pyramid since for any tile (¢, 5,k + 1) of a tiled top-
down pyramid P, the top-down pyramid P’ = {G° = t(i,j, k), G' = t(i,j,k+ 1)} is
irregular.

Figure 7 illustrates the tiled construction of a top-down pyramid associated with
a multi-resolution image. Indeed, our model easily adapts to multi-resolution images
by associating each level of the pyramid to a level of the image. In this example,
we use the same number of tiles for each level: we just need to expand the geomet-
rical matrix to make the correspondence between a tile (i, j, k) and its descendant
t(i, g, k+1).

12
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Figure 7: Extraction of a tiled top-down pyramid from a multi-resolution image
based on the image Cameraman. First row displays the resolutions of the original
image (16 x 16,32 x 32,64 x 64, 128 x 128, 256 x 256). Second row presents the levels
G to G° of the tiled top-down pyramid (subdivision of 16 tiles/level).

6 Conclusion

In this paper, we have defined a topological model of tiled top-down pyramid. Top-
down pyramids are composed of an initial topological map successively refined by
splitting operations. The main advantage in extending this model in a tiled struc-
ture is to process large images while controlling the memory requirements of the
model. Thus, each level of the pyramid is decomposed into a set of topological tiles.
A topological tile derives from a topological map and adds complementary informa-
tion for hierarchical representation between tiles, connecting the border of adjacent
neighbors and recording the tile on disk.

We have proposed an algorithm for an incremental construction of a tiled top-
down pyramid that ensures that a maximum of four tiles is necessary in the local
pyramid (the part of the pyramid that is loaded in memory). Therefore, our experi-
ments have confirmed that we can process any image as long as the size of the local
pyramid fits the available memory in the system.

In our future work, we plan to improve the performance of the model with dif-
ferent splitting techniques and multi-threading support. Indeed, the actual model is
fast enough for common images but still too slow for very large images although it
has shown that the process was viable regarding memory usage. We also intend to
compare different strategies of tiled subdivisions in order to improve the association
of the pyramid with multi-resolution images. Finally, we will focus on the segmen-
tation aspect in order to define global operations that would not be affected by the
local nature of the tiles and would exploit the tiled top-down data structure. This
would lead to a structure of tiled top-down irregular pyramid where the irregular
aspect is not confined within the tiles.
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