Extraction of tiled top-down irregular pyramids from large images

Romain Goffe¹ Guillaume Damiand² Luc Brun³

¹SIC-XLIM, Université de Poitiers, CNRS, UMR6172, Bâtiment SP2MI, F-86962, Futuroscope Chasseneuil, France

²LIRIS, Université Lyon, CNRS, UMR5205, Université Lyon 1, F-69622, Villeurbanne, France

³GREYC, ENSICAEN, CNRS, UMR6072, 6 Boulevard du Maréchal Juin, F-14050, Caen, France

February 21, 2011

Application and Segmentation

Introduction and Context

- Definition of a Tiled Topological Model
- Application and Segmentation
- Conclusion and Perspectives

Definition of a Tiled Topological Mode

Application and Segmentation

Conclusion and Perspectives

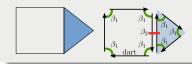
Context

Application

- ANR Project FoGrImMi: Search Through Large Microscopic Images
- Medical imaging (histology, cytology)
- Whole Slide Imaging for microscopical images
- Large multi-resolution images (30GB)

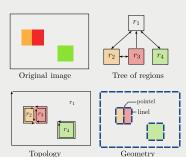
Requirements: efficient tools for automatic analysis and processing of very large images.

Objectives


- Define a top-down topological model
- Efficient update after splitting operations
- Hierarchical structure complying with causality principle
- Memory usage

Constraints and proposed solutions

- Topological properties
 - ⇒ combinatorial maps
- Multi-resolution images
 - \Rightarrow hierarchical model
- Very large images
 - ⇒ top-down construction


Combinatorial and Topological Maps

Combinatorial maps

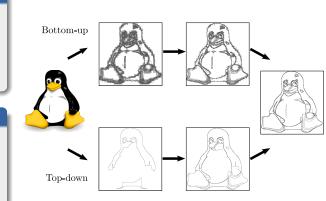
- ullet Dart: \sim half-edge
- β_1 permutation: turns around a face
- ullet β_2 involution: opposite face

Topological maps

- Represent any partition
- Describe adjacency and inclusion relationships
- Efficient processing algorithms

Framework for Irregular Combinatorial Pyramids

Definition

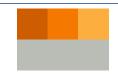

Stack of combinatorial maps successively transformed.

Bottom-up pyramids

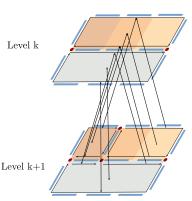
- Main operation: merge
- Drawbacks:
 - encode the whole initial partition
 ⇒ high memory requirements

Top-down pyramids

- Main operation: split
- Advantages:
 - encode upper levels until given segmentation
 - focus of attention


Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure


Construction

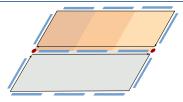
- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation

use of segmentation crite
 splitting: creates one region/pixel

Original image

Top-down pyramid

Definition


- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

Construction

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation

use of segmentation criteria
 splitting: creates one region/pixel
 merging

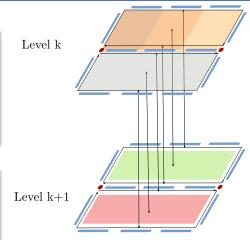
Level k

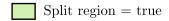
Level k+1

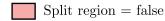
Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

Construction

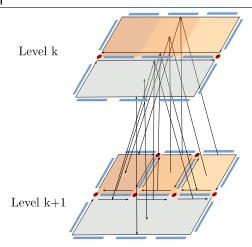

- Copy: level duplication
- Link: hierarchical relations


Level k Level k+1


Definition

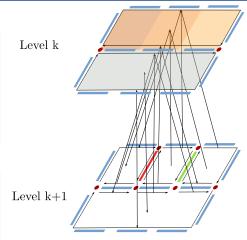
- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

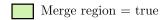
- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

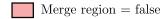


Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

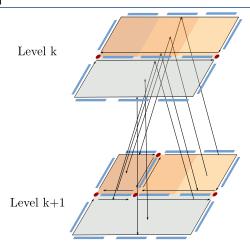

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one
 - region/pixel
 - merging




Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging



Definition

- Stack of topological maps
- Splitting operations from one level to another
- Up/down relations between darts and regions
- Causal structure

- Copy: level duplication
- Link: hierarchical relations
- Refine: splitting operation
 - use of segmentation criteria
 - splitting: creates one region/pixel
 - merging

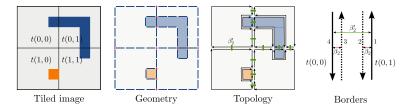
Application and Segmentation

- Definition of a Tiled Topological Model

Constraint

- Top-down construction only minimizes memory
- Application requires a bound memory usage

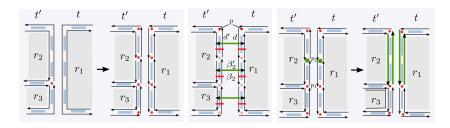
Proposed solution


- Geometrical division of a map in topological tiles
- Insertions of fictive darts on the borders

Integration in the pyramidal model

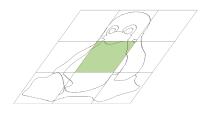
- New operator on darts for adjacent tiles connection
- Swap/load operations
- Incremental construction

Topological tile


- Topological tile t(i,j,k): partition of a geometrical subdivision (i,j) at level k
- t(i,j,k+1) deduced from t(i,j,k) by splitting operation

Tiled top-down pyramid

- Tiled top-down pyramid: set of topological tiles
- Local pyramid: set of tiles loaded in memory

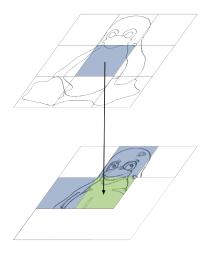

Connection of Adjacent Tiles



Main steps

- Splitting borders
 - \Rightarrow ensures two adjacent tiles share the same number of darts on their borders
- Connection of the darts on shared border
 - \Rightarrow set β_2' relations
- Simplification step for minimality
 - ⇒ if the degree of a vertex equals 2 in both tiles

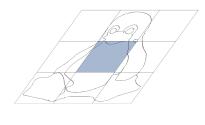
Extraction of a Tiled Pyramid

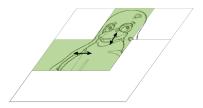


Algorithm

Application and Segmentation

- Load t(i-1, j, k+1) and t(i, j-1, k+1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of
- Save t(i, j, k + 1), t(i 1, j, k + 1),
- Unload t(i-1, j, k+1),
- Scanline extraction
- 4 tiles at most in memory

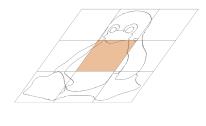



Algorithm

Application and Segmentation

- Load t(i 1, j, k + 1) and t(i, j-1, k+1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of
- Save t(i, j, k + 1), t(i 1, j, k + 1),
- Unload t(i-1, j, k+1),
- Scanline extraction
- 4 tiles at most in memory

Extraction of a Tiled Pyramid

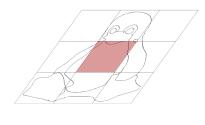


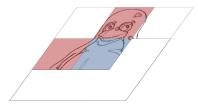
Algorithm

- Load t(i-1,j,k+1) and t(i,j-1,k+1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i 1, j, k + 1), t(i, j 1, k + 1) and t(i, j, k)
- Unload t(i-1,j,k+1), t(i,j-1,k+1) and t(i,j,k)
- Scanline extraction
- 4 tiles at most in memory

Extraction of a Tiled Pyramid

Introduction and Context




Algorithm

Application and Segmentation

- Load t(i 1, j, k + 1) and t(i, j-1, k+1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i 1, j, k + 1), t(i, j - 1, k + 1) and t(i, j, k)
- Unload t(i-1, j, k+1),
- Scanline extraction
- 4 tiles at most in memory

Extraction of a Tiled Pyramid

Algorithm

- Load t(i-1,j,k+1) and t(i,j-1,k+1)
- Create t(i, j, k + 1) from t(i, j, k)
- Connect the neighbors of t(i, j, k + 1)
- Save t(i, j, k + 1), t(i 1, j, k + 1), t(i, j 1, k + 1) and t(i, j, k)
- Unload t(i-1,j,k+1), t(i,j-1,k+1) and t(i,j,k)
- Scanline extraction
- 4 tiles at most in memory

Application and Segmentation

Introduction and Context

- Application and Segmentation

Criteria

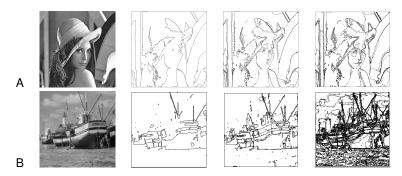


Figure: Basic segmentations for 4 levels pyramids. (A) Hierarchical criterion: standard deviation of up regions; (B) Colorimetric criterion: average gray levels comparison.

Criteria can take into account:

- colorimetric features of regions
- topological features of a level
- hierarchical features of the pyramid

Conclusion and Perspectives

Construction from a Multi-resolution Image

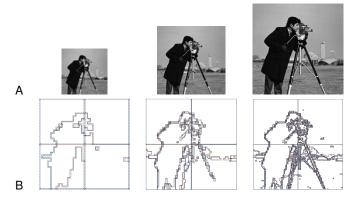


Figure: (A) Image resolutions; (B) Pyramid levels.

- Tiled structure ⇒ fictive borders are displayed
- Multi-resolution images
 pyramid levels and image resolutions are independent notions
- Irregular pyramid ⇒ irregular model within the tiles

Table: Memory usage: extraction for different scalings of image *Lena*.

tiles per level	memory (MB)	disc (MB)
1	92	7
16	95	20
256	95	272
4 096	111	4315
	1 16 256	1 92 16 95 256 95

Extreme configuration: 4 levels 32K*32K

Natural segmentation: lots of darts and regions

Controlled memory usage

Conclusion and Perspectives

Conclusion

- Definition of a data structure
 - topological representation
 - hierarchical causal structure
 - top-down construction

- Implementation
 - based on topological maps
 - tiled subdivision
 - colorimetric, topological and hierarchical segmentation criteria
 - integrated with multi-resolution images

Perspectives

- Segmentation aspect
 - integration of clustering and quantization methods
 - specific application to medical images

- Model improvements
 - compare different strategies for the subdivision in tiles
 - faster processing for very large images
 - different splitting techniques
 - multi-threading support