
Pyramides irrégulières descendantes tuilées pour la segmentation de grandes images histologiques

20 septembre 2011

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

Pyramides descendantes tuilées

Définition

Projection

Raffinement

Conclusion

Segmentation de grandes images

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

Pyramides descendantes tuilées

Définition

Projection

Raffinement

Conclusion

Segmentation de grandes images

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion

Contexte de la thèse

- Projet ANR FoGrImMi
- Traitement de grandes images histologiques 2D de lames entières

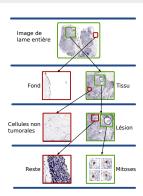
Hamamatsu Nanozoomer

Caractéristiques des images

- Très haute résolution (54 000 dpi)
- Volume de données (18 Go)
- Multi-échelle/multi-résolution

Problèmes soulevés

- Représentation en mémoire
- Manipulation / traitements


Problématique

Objectifs

- Définir un modèle de représentation
- Définir un cadre pour un processus de segmentation

Contraintes

- Faisabilité de la segmentation indépendamment :
 - □ de la taille de l'image
 - □ du niveau de détail du modèle
- Reproduire l'analyse des pathologistes :
 - □ critères topologiques et hiérarchiques
 - analyse hiérarchique descendante

Analyse d'une image histologique

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

Pyramides descendantes tuilées

Définition

Projection

Raffinement

Conclusion

Segmentation de grandes images

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion

Représentation d'une image

Partition en régions

- Région : ensemble 4-connexe de pixels (critère d'homogénéité)
- Partition : ensemble de régions pavant l'image

Différents modèles de représentation

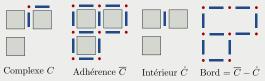
- Modèles géométriques : tableaux d'étiquettes, frontières interpixel . . .
- Modèles topologiques : RAG, cartes . . .
- Modèles hiérarchiques : quadtrees, pyramides de graphes . . .

Partition

Frontières interpixel

RAG

Pyramide de graphes simples


Complexes cellulaires

Topologie d'un complexe cellulaire [Kovalevsky 1989]

Pavage du plan tenant compte de tous les éléments

- Éléments interpixel
- pointel lignel pixel
- Quelques définitions

- Cadre formel : information topologique et géométrique des frontières
- Modèle non compact : pas de description globale des régions

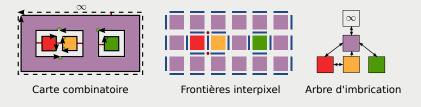
La carte combinatoire

Un modèle topologique [Cori 1975, Lienhardt 1989]

- Élément de base : brin ~ demi-arête
- Permutation β_1 : tourner autour d'une face
- Involution β₂: passer à la face opposée

Description des cellules

- Sommet = $(\beta_1 \circ \beta_2)^*$
- Arête = β_2^*
- Face = β_1^*


- Description globale des adjacences entre les régions
- Relations d'imbrication
- Géométrie des frontières

La carte topologique

Introduction

Définition [Fiorio 1995, Brun 1996, Damiand 2001]

- Modèle complet et minimal de description d'une partition
- Combinaison de trois modèles :

- Information topologique et géométrique
- Dans certains cas : taille modèle > taille image ⇒ pas utilisable pour les grandes images

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques Cartes tuilées Opérations de construction Conclusion

Pyramides descendantes tuilées

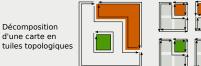
Définition Projection Raffinemer

Conclusion

Segmentation de grandes images

Conclusion

Tuiles topologiques

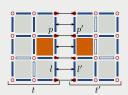

Carte topologique locale

Décomposition d'une image en tuiles

Décomposition d'une carte en

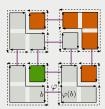
Tuile topologique carte topologique locale codant une tuile de l'image

- Contrainte mémoire potentiellement résolue
- Pas de cohérence globale sur l'ensemble de tuiles topologiques


Problématique

Comment s'abstraire de la notion de tuile topologique?

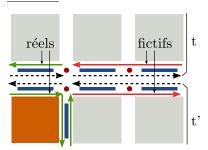
Cohérence de la partition


Nécessité d'ajouter de l'information au niveau des bords des tuiles

Représentation interpixel

Définition d'une relation d'équivalence entre les cellules appartenant aux bords des tuiles

Cartes combinatoires



Construction d'une involution φ entre les brins appartenant aux bords des tuiles adjacentes

Conclusion

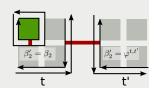
Bords fictifs

Objectif: Distinguer bords introduits par la décomposition / bords existants

- Oracle entre les régions
- Marque sur les brins du bord des tuiles

■
$$\mathcal{B}_{R}^{T}$$
: brins représentant un bord réel
■ \mathcal{B}_{R}^{T} : brins représentant un bord fictif

Problématique

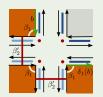

Comment définir une carte combinatoire sur \mathcal{B}_{R}^{T} ?

Conclusion

Objectif: définition d'une carte $C = (\mathcal{B}_{R}^{T}, \delta_{1}, \delta_{2})$

Résultat intermédiaire : involution β_2'

$$\begin{array}{cccc} \beta_2': & \mathcal{B}^\mathsf{T} & \to & \mathcal{B}^\mathsf{T} \\ & b & \mapsto & \left\{ \begin{array}{l} \varphi^{t,t'}(b) & \text{si } \exists (t,t') \mid b \in \mathcal{B}_\partial^{t,t'} \\ \beta_2(b) & \text{sinon} \end{array} \right. \end{array}$$



Permutation δ_1 et Involution δ_2

$$\delta_1: \mathcal{B}_R^T \to \mathcal{B}_R^T$$

 $b \mapsto \beta_1 \circ (\beta_1 \circ \beta_2')^k(b)$ avec

$$k = \min\{p \in \mathbb{N} \mid \beta_1 \circ (\beta_1 \circ \beta_2')^p(b) \in \mathcal{B}_R^T\}$$

$$\delta_2 = \beta_2'|_{\mathcal{B}_P^T}$$

Modèle de carte tuilée

	Carte tuilée	Carte topologique
ensemble de brins	\mathcal{B}_R^T	\mathcal{B}
permutation	δ_1	eta_1
involution	δ_2	eta_2

Partition Carte tuilée

Modèle

- Sommets, arêtes et faces répartis sur plusieurs tuiles
- Bords fictifs ⇒ analogie avec les séquences de connexion [Brun et Kropatsch 2003]
- Opérations de chargement/déchargement des tuiles

Problématique

- Construction depuis une partition initiale?
- Opérations de modification ?

Construction d'une carte tuilée à partir d'une image

Principe général

- 1. Construire la carte topologique de chaque tuile
- Garantir la cohérence du modèle sur le bord des tuiles
- 3. Garantir la faisabilité mémoire du processus de construction

Solution proposée

1.	Extraction d'une tuile [Damiand et a	<i>l.</i> 2004]	sans simplifier	les sommets du
	bord des tuiles	-	•	

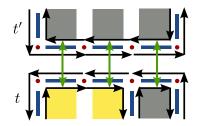
- bijection élémentaire φ entre $\mathcal{B}_{\exists}^{t,t'}$ et $\mathcal{B}_{\exists}^{t',t}$
- 2. Connexion des tuiles adjacentes
 - modèle global à partir des opérateurs δ_i
- 3. Algorithme de construction incrémental
 - opérations de chargement/déchargement

Connexion des tuiles adjacentes

Principe

1. Bords de *t* et *t'* non simplifiés

$$\Rightarrow \operatorname{card}(\mathcal{B}_{\partial}^{t,t'}) = \operatorname{card}(\mathcal{B}_{\partial}^{t',t})$$

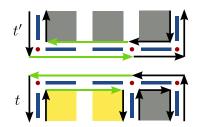


- $\varphi^{t,t'}$ définit explicitement l'involution δ_2
- La permutation δ_1 est définie implicitement d'après β_2' et β_1

Connexion des tuiles adjacentes

Principe

- 1. Bords de t et t' non simplifiés $\Rightarrow card(\mathcal{B}_{\partial}^{t,t'}) = card(\mathcal{B}_{\partial}^{t',t})$
- 2. Parcourir en parallèle des brins de $\mathcal{B}_{\partial}^{t,t'}$ et de $\mathcal{B}_{a}^{t',t}$ et établir la bijection $\varphi^{t,t'}$



- $\varphi^{t,t'}$ définit explicitement l'involution δ_2
- La permutation δ_1 est définie implicitement d'après β_2' et β_1

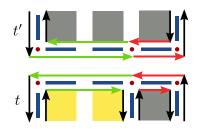
Connexion des tuiles adjacentes

Principe

- 1. Bords de t et t' non simplifiés $\Rightarrow card(\mathcal{B}_{\partial}^{t,t'}) = card(\mathcal{B}_{\partial}^{t',t})$
- 2. Parcourir en parallèle des brins de $\mathcal{B}_{\partial}^{t,t'}$ et de $\mathcal{B}_{a}^{t',t}$ et établir la bijection $\varphi^{t,t'}$
- 3. Simplifier les sommets de degré 2

- $\varphi^{t,t'}$ définit explicitement l'involution δ_2
- La permutation δ_1 est définie implicitement d'après β_2' et β_1

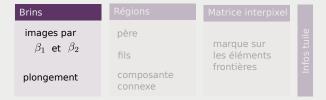
Opérations de construction


Connexion des tuiles adjacentes

Cartes tuilées

Principe

Tuiles topologiques


- 1. Bords de t et t' non simplifiés $\Rightarrow card(\mathcal{B}_{\partial}^{t,t'}) = card(\mathcal{B}_{\partial}^{t',t})$
- 2. Parcourir en parallèle des brins de $\mathcal{B}_{\partial}^{t,t'}$ et de $\mathcal{B}_{a}^{t',t}$ et établir la bijection $\varphi^{t,t'}$
- 3. Simplifier les sommets de degré 2
- 4. Détecter les bords fictifs

- $\varphi^{t,t'}$ définit explicitement l'involution δ_2
- La permutation δ_1 est définie implicitement d'après β_2' et β_1

Opérations de chargement/déchargement

- Structure dynamique en mémoire / structure statique sur disque dur
- Identifiants entiers et uniques pour les brins/régions
- Un fichier par tuile contenant

⇒ Carte combinatoire

- Espace mémoire borné (3 tuiles)
- Peu adapté au raffinement d'une région

Opérations de chargement/déchargement

- Structure dynamique en mémoire / structure statique sur disque dur
- Identifiants entiers et uniques pour les brins/régions
- Un fichier par tuile contenant



⇒ Arbre d'imbrication

- Espace mémoire borné (3 tuiles)
- Peu adapté au raffinement d'une région

Opérations de chargement/déchargement

- Structure dynamique en mémoire / structure statique sur disque dur
- Identifiants entiers et uniques pour les brins/régions
- Un fichier par tuile contenant

⇒ Géométrie

- Espace mémoire borné (3 tuiles)
- Peu adapté au raffinement d'une région

Opérations de chargement/déchargement

- Structure dynamique en mémoire / structure statique sur disque dur
- Identifiants entiers et uniques pour les brins/régions
- Un fichier par tuile contenant

⇒ Tuile topologique

- Espace mémoire borné (3 tuiles)
- Peu adapté au raffinement d'une région

Modification d'une carte tuilée

Raffinement d'une région dans une tuile

- Région initiale
- Décomposition
- Fusion

Raffinement d'une région dans une carte tuilée

- Région d'une carte tuilée = liste de régions r_i dans différentes tuiles
- Pour chaque région r_i
 - \Box charger la tuile t contenant r_i
 - \square raffiner r_i
 - □ mettre à jour les bords fictifs de *t* et des tuiles adjacentes

Modification d'une carte tuilée

Raffinement d'une région dans une tuile

- Région initiale
- Décomposition
- Fusion

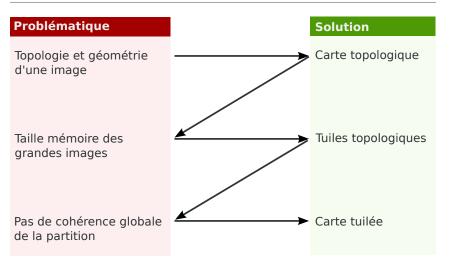
Raffinement d'une région dans une carte tuilée

- Région d'une carte tuilée = liste de régions r_i dans différentes tuiles
- Pour chaque région r_i
 - \Box charger la tuile t contenant r_i
 - \Box raffiner r_i
 - □ mettre à jour les bords fictifs de *t* et des tuiles adjacentes

Modification d'une carte tuilée

- Raffinement d'une région dans une tuile
 - Région initiale
 - Décomposition
 - Fusion

Raffinement d'une région dans une carte tuilée


- Région d'une carte tuilée = liste de régions r_i dans différentes tuiles
- Pour chaque région r_i
 - \Box charger la tuile t contenant r_i
 - \Box raffiner r_i
 - mettre à jour les bords fictifs de t et des tuiles adjacentes

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

- Modèle de représentation d'une grande image
- Ne permet pas d'utiliser l'information multi-échelle

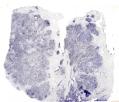
Introduction

Notions préliminaires

Cartes tuilées

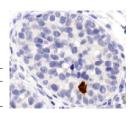
Tuiles topologiques Cartes tuilées Opérations de construction Conclusion

Pyramides descendantes tuilées


Définition Projection

Raffinement

Conclusion


Segmentation de grandes images

Problématique

Résolution :	2048×1280
Exemple de	delimiter
traitement	fond/tissu

Résolution :	8192×5120
Exemple de	quantifier
traitement	mitoses

Objectifs

- Multi-échelle et multi-résolution
- Faisabilité mémoire des traitements

Pyramides combinatoires

- Topologie d'une hiérarchie de partitions
- Construction ascendante
- Base = niveau de détail le plus élevé

Solution proposée

- Construction descendante
- Chaque niveau = carte tuilée

Définition

Pyramides descendantes tuilées

- Combinaison de trois modèles hiérarchiques
- Principe de causalité [Koenderink 1984]

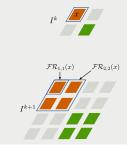
Pyramide d'images

Aspect multi-résolution des images

Pyramide de tuiles

Faisabilité mémoire de la construction

Pyramide de cartes tuilées



Combiner multi-échelle et multi-résolution

Pyramide d'images

- Séquence d'images de résolutions croissantes
- **Ratios** entiers : r_x^k en largeur, r_y^k en hauteur

Fenêtres de réduction

 $\mathcal{FR}_{m,n}(x)$: ensemble de $m \times n$ pixels correspondant à x au niveau k+1 [Bister 1990]

Problématique

- Taille de fenêtre optimale?
- Comment transposer cette notion dans une représentation interpixel?

Raffinement

Fenêtres de réduction entre pixels

Projection

3 catégories selon $Q = (m \times n)/(r_x^k \times r_y^k)$

Catégories de pyramides

- Q < 1 : pyramide trouée et non recouvrante
- Q = 1 : pyramide non trouée et non recouvrante
- \square Q > 1 : pyramide recouvrante

Conclusion

Définition

Privilégier Q = 1 pour

- □ représenter toute l'information
- éviter la redondance d'information

Définition

Conclusion

3 catégories selon $Q = (m \times n)/(r_x^k \times r_y^k)$

Catégories de pyramides

- Q < 1 : pyramide trouée et non</p> recouvrante
- $\mathbb{Q} = 1$: pyramide non trouée et non
- \square Q > 1 : pyramide recouvrante

 $Q = 2 \times 2/16 < 1$

Définition

Projection

Cartes tuilées

3 catégories selon $Q = (m \times n)/(r_x^k \times r_y^k)$

Catégories de pyramides

- Q < 1 : pyramide trouée et non</p> recouvrante
- Q = 1 : pyramide non trouée et non recouvrante
- \square Q > 1 : pyramide recouvrante

Définition

Projection

Cartes tuilées

3 catégories selon $Q = (m \times n)/(r_x^k \times r_y^k)$

Catégories de pyramides

- Q < 1 : pyramide trouée et non</p> recouvrante
- \blacksquare Q = 1: pyramide non trouée et non recouvrante
- \blacksquare Q > 1: pyramide recouvrante

Conclusion

3 catégories selon $Q = (m \times n)/(r_x^k \times r_y^k)$

Catégories de pyramides

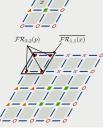
- Q < 1 : pyramide trouée et non</p> recouvrante
- \blacksquare Q = 1: pyramide non trouée et non recouvrante
- \blacksquare Q > 1: pyramide recouvrante

 $Q = 2 \times 2/1 > 1$

Conclusion

Privilégier Q = 1 pour :

- représenter toute l'information
- éviter la redondance d'information.


Raffinement

Fenêtres de réduction entre pointels

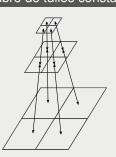
Définition

Introduction

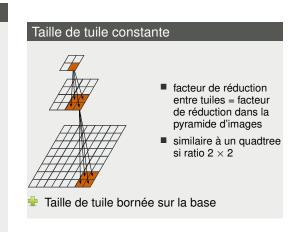
Définition

- $\blacksquare \mathcal{FR}_{m,n}(p) = \overline{\mathcal{FR}_{m-1,n-1}(x)} \cap \mathcal{P}^{k+1}$
- $\blacksquare \mathcal{P}^k$: ensemble des pointels du niveau k
- x : pixel incident à p

Résultat

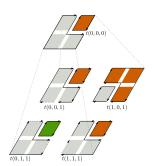

La relation $\mathcal{FR}_{r_{x}^{k},r_{x}^{k}}$ code une pyramide de pointels *non trouée* et *non* recouvrante.

Pyramide de tuiles


Définition

- Séquence de pavages réguliers
- Deux solutions pour une pyramide non-trouée et non-recouvrante :

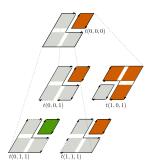
Nombre de tuiles constant


Taille de tuile de la base dépendant du premier niveau

Projection Pyramide de cartes tuilées

Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur



- topologiques
- géométriques
- hiérarchiques

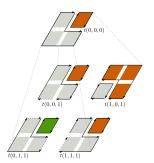
Pyramide de cartes tuilées

Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur

- topologiques
- géométriques
- hiérarchiques

Projection


Raffinement

Conclusion

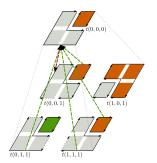
Pyramide de cartes tuilées

Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur

- topologiques
- géométriques
- hiérarchiques

Projection


Raffinement

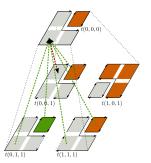
Conclusion

Pyramide de cartes tuilées

Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur

entre les brins


- entre les tuiles

- topologiques
- géométriques
- hiérarchiques

Pyramide de cartes tuilées

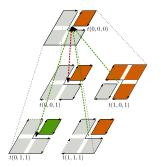
Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur

- entre les brins
- entre les régions
- entre les tuiles

- topologiques
- géométriques
- hiérarchiques

Projection

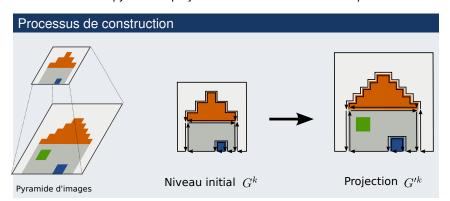

Raffinement

Conclusion

Pyramide de cartes tuilées

Définition

- Combiner
 - pyramide régulière = pile d'images tuilées [Jolion 1994]
 - pyramide irrégulière = contenu des images [Meer 1989, Montanvert 1991]
- Séquence de cartes tuilées successivement raffinées
- Relations prédécesseur/successeur

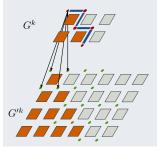

- entre les brins
- entre les régions
- entre les tuiles

- topologiques
- géométriques
- hiérarchiques

Introduction

Définition

- Construction descendante garantie par opérations de découpe
- Causalité de la pyramide : projection des frontières du niveau précédent



Conclusion

Objectif: Isomorphisme entre G^k et $G^{'k}$

Solution proposée : bande de projection

Ensemble des plongements géométriques possibles de niveau k+1 d'une frontière de niveau k

Définition :
$$\mathcal{BP}(f) = P(f) \cup L(f)$$

•
$$P(f) = \bigcup_{i} \mathcal{FR}_{r_x^k, r_y^k}(p_i)$$
: pointels de niveau

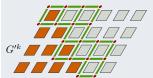
$$k+1$$
 correspondant à f

■ L(f): lignels de niveau k + 1 incidents à 2 pointels de P(f)

Résultat sur les frontières

- Traitement particulier des extrémités
- Pas de chevauchements/déconnexions

⇒ topologie préservée


Conclusion

Objectif: Isomorphisme entre G^k et $G^{'k}$

Solution proposée : bande de projection

Ensemble des plongements géométriques possibles de niveau k + 1 d'une frontière de niveau k

Définition :
$$\mathcal{BP}(f) = P(f) \cup L(f)$$

■
$$P(f) = \bigcup_{i} \mathcal{FR}_{r_{x}^{k}, r_{y}^{k}}(p_{i})$$
 : pointels de niveau

k+1 correspondant à f

■ L(f): lignels de niveau k + 1 incidents à 2 pointels de P(f)

Résultat sur les frontières

- Traitement particulier des extrémités
- Pas de chevauchements/déconnexions

⇒ topologie préservée

Projection directe

Définition

Projection des lignels suivant une ligne droite

- Méthode simple et peu coûteuse
- Projection grossière

Projection optimisée

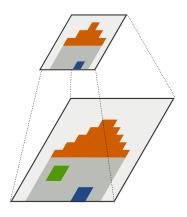
Calcul d'un plus court chemin (Dijkstra) dans la bande de projection

- Méthode plus coûteuse
- Utilise l'information des pixels du niveau suivant

Projection

- Sélection des régions par un critère de focus d'attention
- Raffinement des régions sélectionnées

Introduction

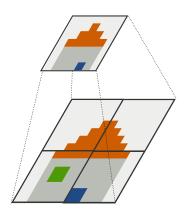

Définition

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion Définition Raffinement Conclusion

Projection

Construction: principe général

Étapes


- Pyramide d'images
- Pyramide de tuiles
- Projection des frontières
- Construction $G^{\prime k}$ et relations

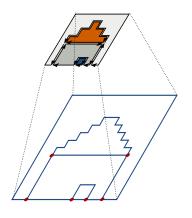
- Focus d'attention ⇒ raffiner uniquement les

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion

Définition Projection Raffinement Conclusion

Construction: principe général

Étapes


- Pyramide d'images
- Pyramide de tuiles
- Projection des frontières
- Construction *G*′^k et relations prédécesseur/successeur
- Focus d'attention
- Découpe des régions

- Causalité ⇒ ne pas modifier les arêtes projetées
- Focus d'attention ⇒ raffiner *uniquement* les régions d'intérêt
- Raffinement ⇒ critère de découpe des régions

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion

Définition Projection Raffinement Conclusion

Construction: principe général

Étapes

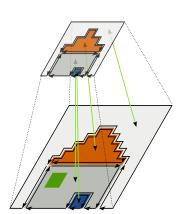
- Pyramide d'images
- Pyramide de tuiles
- Projection des frontières
- Construction G'^k et relations prédécesseur/successeur
- Focus d'attention
- Découpe des régions

- Causalité ⇒ ne pas modifier les arêtes projetées
- Focus d'attention ⇒ raffiner *uniquement* les régions d'intérêt
- Raffinement ⇒ critère de découpe des régions

Définition

enerai

- Étapes

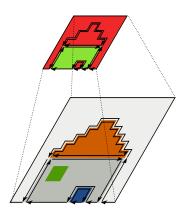

 Pyramide d'images
- Pyramide de tuiles

Raffinement

- Projection des frontières
- Construction G'^k et relations prédécesseur/successeur
- Focus d'attention
- Découpe des régions

- Causalité ⇒ ne pas modifier les arêtes
- Focus d'attention ⇒ raffiner *uniquement* les régions d'intérêt
- Raffinement ⇒ critère de découpe des régions

Notions preliminaires Gartes tu Projection


Définition

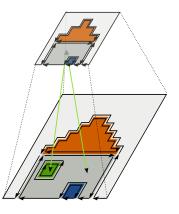
Raffinement

Conclusion

clusion

Construction : principe général

Étapes

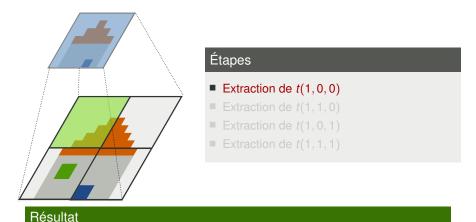

- Pyramide d'images
- Pyramide de tuiles
- Projection des frontières
- Construction G'^k et relations prédécesseur/successeur
- Focus d'attention
- Découpe des régions

- Causalité ⇒ ne pas modifier les arêtes projetées
- Focus d'attention ⇒ raffiner *uniquement* les régions d'intérêt
- Raffinement ⇒ critère de découpe des régions

Introduction Notions préliminaires Cartes tuilées Pyramides descendantes tuilées Segmentation de grandes images Conclusion Définition Raffinement

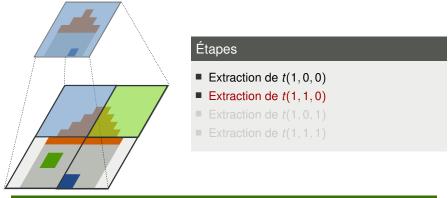
Projection

Construction: principe général


Étapes

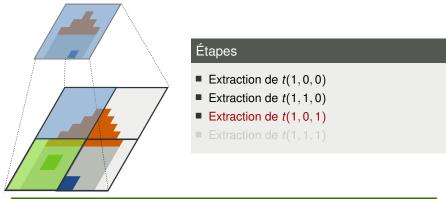
- Pyramide d'images
- Pyramide de tuiles
- Projection des frontières
- Construction G'k et relations prédécesseur/successeur
- Focus d'attention
- Découpe des régions

Oracle


- Causalité ⇒ ne pas modifier les arêtes projetées
- Focus d'attention ⇒ raffiner uniquement les régions d'intérêt
- Raffinement ⇒ critère de découpe des régions

Construction: extraction d'une tuile

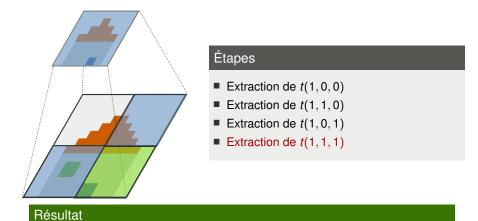
Maximum de 4 tuiles en mémoire

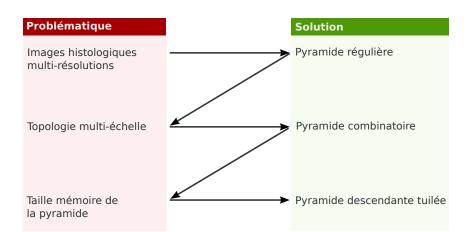

Construction: extraction d'une tuile

Résultat

Maximum de 4 tuiles en mémoire

Construction: extraction d'une tuile


Résultat


Maximum de 4 tuiles en mémoire

Projection Construction: extraction d'une tuile

Maximum de 4 tuiles en mémoire

Définition

Introduction

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

Pyramides descendantes tuilées

Définition

Projection

Raffinement

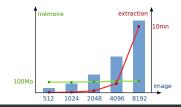
Conclusion

Segmentation de grandes images

Conclusion

Segmentation à l'aide d'une pyramide descendante tuilée

Principe


Introduction

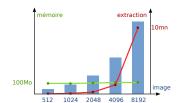
- Critère de segmentation = Oracle de construction
- Oracle = combinaison de propriétés fournies par le modèle

Exemple

Critère photométrique et hiérarchique : variance des pixels de la région parente ⇒ raffinement des régions hétérogènes

- Durée d'extraction linéaire suivant la taille de l'image
- Mémoire constante dépendant de la taille d'une tuile

Segmentation à l'aide d'une pyramide descendante tuilée


Principe

- Critère de segmentation = Oracle de construction
- Oracle = combinaison de propriétés fournies par le modèle

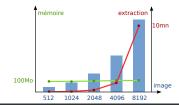
Exemple

Critère photométrique et hiérarchique : variance des pixels de la région parente ⇒ raffinement des régions hétérogènes

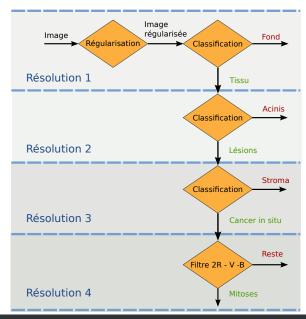
- Durée d'extraction linéaire suivant la taille de l'image
- Mémoire constante dépendant de la taille d'une tuile

Segmentation à l'aide d'une pyramide descendante tuilée

Principe


- Critère de segmentation = Oracle de construction
- Oracle = combinaison de propriétés fournies par le modèle

Exemple


Critère photométrique et hiérarchique : variance des pixels de la région parente

⇒ raffinement des régions hétérogènes

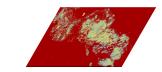
- Durée d'extraction linéaire suivant la taille de l'image
- Mémoire constante dépendant de la taille d'une tuile

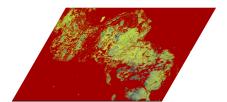
Segmentation d'images histologiques

Exemples de segmentation

Image

- Résolution 1 : 2 048 × 1 280
- Résolution 2:4096 × 2560
- Résolution 3 : 8 192 × 5 120


Modèle


- Nombre de tuiles : 840
- Durée d'extraction : ~ 4mn
- Mémoire : ~ 100Mo

Introduction

Notions préliminaires

Cartes tuilées

Tuiles topologiques

Cartes tuilées

Opérations de construction

Conclusion

Pyramides descendantes tuilées

Définition

Projection

Raffinement

Conclusion

Segmentation de grandes images

Contributions

Problématique

Codage de grandes partitions

Solution proposée

- Notion de tuile topologique
- Abstraction de la notion de tuile
- Méthodes complémentaires

- Topologie et géométrie de la partition
- Taille mémoire bornée
- Critères multiples de segmentation

Contributions

Problématique

Codage de l'information multi-échelle et multi-résolution de grandes partitions

Solution proposée

- Définition d'un modèle combinant :
 - une pyramide d'images
 - une pyramide de tuiles
 - une pyramide de cartes tuilées
- Méthodes de projection
- Méthodes de raffinement garantissant la causalité

- Construction descendante
- Information photométrique, topologique, géométrique, hiérarchique
- Reproduction de l'analyse naturelle des pathologistes
- Taille mémoire bornée

Contributions

Problématique

Codage de l'information multi-échelle et multi-résolution de grandes partitions

Solution proposée

- Définition d'un modèle combinant :
 - □ une pyramide d'images
 - une pyramide de tuiles
 - une pyramide de cartes tuilées
- Méthodes de projection
- Méthodes de raffinement garantissant la causalité

- Construction descendante
- Information photométrique, topologique, géométrique, hiérarchique
- Reproduction de l'analyse naturelle des pathologistes
- Taille mémoire bornée

Contributions

Problématique

Codage de l'information multi-échelle et multi-résolution de grandes partitions

Solution proposée

- Définition d'un modèle combinant :
 - □ une pyramide d'images
 - une pyramide de tuiles
 - une pyramide de cartes tuilées
- Méthodes de projection
- Méthodes de raffinement garantissant la causalité

- Construction descendante
- Information photométrique, topologique, géométrique, hiérarchique
- Reproduction de l'analyse naturelle des pathologistes
- Taille mémoire bornée

Perspectives

Définition du modèle

- Carte tuilée : arbre global des relations d'imbrication
- Pyramide : opérations de relinking

Opérations sur le modèle

Partitions déformables : raffiner la géométrie à topologie constante

Extension du modèle

Généralisation des cartes tuilées en dimension supérieure

Merci de votre attention